

CAL Software Review

Recon, Sim
Considerations
Status, Plans

SLAC, September 2000

CAL Recon: High Level Goals

Get the Best Energy Resolution
 Best means SRD or better

Maximise Effective Area
 Efficiency of Cuts vs. Tails in Reconstructed Energy distributions

- Give Discriminate Observables for Background Rejection LAT needs a factor ~100 rejection from CAL ($x \sim 1000 \ ACD$)n Moments, Shower Topological variables, Clusters, ...
- Feedback with TKR to improve PSF (and Energy Resolution)

 Clusters, Moments, ...
- •VHE CalOnly events :

Energy and Direction determination

Recon: General Overview

· Philosophy:

Global Event Recon (After sub-system Recon)

Means Requirements at the LAT level

Recon: General Overview

• Illustration: feedback btw CAL and TKR:

E.g., In Gaudi, CAL and TKR Communicate through Transient Data Store

2 Steps: Pre-Recon & Recon

Pre-Recon: Low Level Corrections

Pre-recon is the Starting point before Recon:

Subtract Pedestals

Light Attenuation Correction

Non-Linearity Corrections

Gain Corrections

Cross-talk Corrections

Saturation Effects

Input: from Calibration, Performance State, Geometry, CALRecO

Direction/ Impact needed to correct for light attenuation

Output: Energy per Log

Recon: High Level Corrections

· Recon is the High level Correction after Pre-Recon:

Geometry is everywhere

Correct for Energy lost in TKR

Correct for "Back" Leakage

Correct for Sides/Cracks

Yield Background Rejection Observables

Yield Feedback Observables to other sub-systems

Clustering, Moments, ...

CALRec0:

Input :from Pre-Recon CAL Private

E_Log_End, Pedestal, Light Atten. Gain & Linearity Corrected.

Output: E0, moments0, ... To TKRRec0, ...

Recon: High Level Corrections

Geometry is everywhere

· CALRec1:

Input: DirO, NHits from TKRRecO

Xtal Longitudinal Attenuation Correction

1st pass E_Loss in TKR, E_Leakage "Back", "Sides/ Cracks"

Output : E2, moments1, ... To TKRRec1, ...

· CALRec2:

Input : Tracks[i], Vertex[i], Xi2[i], from TKRRec1

Full Correction = $f(\Theta, \Phi, Xcal, Ycal, Vertex, ...)$

Output : E2, Δ E, Clusters, Dir (if calonly), Backgr. Rejection Vars, ...

To TKRRec2, To Science Analysis (....)

Sim + Recon: S/W Task Levels

Different Levels of Tasks:

- 1- Prototypes to develop & test physics/instrument optimisation ideas
 - Algorithm development
 - · Includes Beam Tests to anchor ideas into real world
 - Need for a collaboration wide s/w tool for feedback between subsystems
 - · Glastsim has fulfilled this role till now for SIM & Recon
 - TBRecon should do it for TB, Balloon etc...
- 2 Write Requirements (RQMTs) according to Step 1 & SRD!
- 3 Data Objects Definitions according to RQMTs
 - Module Inputs, Outputs
 - Transient Objects + Converters

Sim + Recon: S/W Task Levels

4 - Computational Code/Algorithm

· Performance: precision, time consummation, ...

5 - Services:

- Histogramming
- Intermediate Tuples
- 6 Test and validation Modules
- 7 Implementation
 - · Interaction with other modules
 - · Global Performance

Recon: Where We Are & Where to Go

High Energy Corrections:

· 2 methods:

Profile fitting (Pfit) and Correlations with last Layer (Ce7); Pfit Implemented only in LATRecon; Both Impl. in TBRecon

- ⇒ Level 1 : Complete current Algos, Merge TBRecon & LATRecon? Short term (Regis, Sacha, merging: UW?)
- \Rightarrow Develop new Algos

Level 2 : RQMTs : Short term (Eric, Arache)

Level 1 & 4 : Mid Term (Regis PHD+?)

Recon: Where We Are & Where to Go

· Low energy Corrections:

Prototype for LATRecon & GTOCC; Not yet implemented; MC Extraction of Coefficients not yet fully automated;

⇒ Level 1 : Implement for TBRecon

Run TBSim; Extract Coefficients;

Implement (Arache + Sacha +?) Short Term; LATRecon: Await Migration to Gaudi?; Mid Term?

- ⇒ Level 2 : RQMNTs
- · Side/ Cracks Corrections

Ideas; Few Tries - No implementation;

⇒ Level 1 : Build Prototypes (who?); Mid Term

Level 2: RQMNTs (Eric + Arache) Short Term;

Recon: Where We Are & Where to Go

Discriminant Variables for Background Rejection

AO status unchanged;

⇒ Level 1 : Improve moments (smarter weights) Mid Term (CdF?)

Level 1: Clusters: Build Prototypes (who?) Short term

- ⇒ Level 2 : RQMNTs (Eric +Arache) Short term
- Feedback with TKR :

Some Class Definitions exist (CdF, UCSC);

- ⇒ Level 1 : Prototypes Short Term (who?) Short term
- ⇒ Level 2 : RQMNTs (CAL + TKR)
- · Failure modes handling; adaptation

NULL:

 \Rightarrow Level 2 : RQMNTs (CAL + TKR)

Recon: Related s/wTasks

- Pre-Recon (Pedestals, Light Atten, Gains, Linearity corrections)
- · Calibration s/w
- · Validation on Beam Tests
- Production

> @ LA

Reprocessing

Improvements, Decisions @ CAL Level

· Yield the Energy Resolution Function for Science Analysis

•

Energy Resolution Function

- The Energy Resolution Function (ERF!) is as important as Recon to do Science Analysis!
- It is derived through extensive simulations of the instrument @ the LAT level, ... and Test Beam runs.
- It is a function of (E_true, E_estimate, Θ , Φ , Xcal, Ycal, Vertex, ...)
- It is dependant on Performance State
- · Questions :
 - How do we apply Recon Performance change into ERF?
 Reprocessing of Data for better Recon means also new ERF, Aeff
 - · How often will we have to generate it?
 - Is it possible to anticipate failure modes effects by MC
 e.g., resolution drops as f=(number of dead logs) ...
 Problem to be addressed @ LAT Level

Recon: Correction Algorithms Overview

· Correction Algo = function of Energy, Angle : Current Status

When the Shower Maximum is not contained (~60 GeV @ O°), The Correlation method using e7 doesn't work anymore

@ E < few 100 MeV Eenergy

Loss in the tracker is dominant

• Starting point :

A non negligible fraction of Energy is lost in the TKR Below a few 100 MeV

- Use Correlation btw E_Lost and TKR Nhits:
- · Definitions :

$$E_0 = E_{seen}^{cal} + E_{leak}$$
 $E_{leak} = \alpha * N_{hits} + \beta$

• Generate MC runs @ various E, θ

• Fit coefficients as a function of MC Truth Energy, θ , Vertex

$$\begin{cases} \alpha = \alpha(E_0, \theta, vertex) \\ \beta = \beta(E_0, \theta, vertex) \end{cases}$$

1st Source of error: model to fit, errors of fit, ...

For real events E_True is unknown : so one has to use :

2st Source of error : dispersion of α & β wrong E, wrong θ

$$\begin{cases} \alpha = \alpha \left(E_{seen}^{cal}, \theta, vertex \right) \\ \beta = \beta \left(E_{seen}^{cal}, \theta, vertex \right) \end{cases}$$

Arache Djannati-Ataï

Then use an iterative method :

$$\begin{cases} E_{1} = E_{seen}^{cal} + \alpha (E_{seen}^{cal}, \theta, vertex) * N_{hits} + \beta (E_{seen}^{cal}, \theta, vertex) \\ \cdots \\ E_{n} = E_{seen}^{cal} + \alpha (E_{n-1}, \theta, vertex) * N_{hits} + \beta (E_{n-1}, \theta, vertex) \end{cases}$$

· Caution!

• If one uses MC Truth
$$E = E_{seen}^{cal} + \alpha(E_0, \theta, vertex) * N_{hits} + \beta(E_0, \theta, vertex)$$

One gets very optimistic results !!!

And this is what has been done for the AO performance @ 100 MeV, 0°

(The best way to see that is to look into the code: is there any iteration?!)

Now why does the correct method work?

$$\sigma_{E}^{2} = \frac{\sigma_{E_{seen}}^{2} + \alpha^{2} * \sigma_{Nhits}^{2} + 2 * \alpha * \rho_{E_{seen},Nhits}^{cal} * \sigma_{E_{seen}}^{cal} * \sigma_{Nhits}}{(1 - (\alpha' * Nhits + \beta'))^{2}}$$

It works if $lpha*
ho_{E_{seen}^{cal},Nhits}$ gives a negative contribution to σ_E^2

Performance illustration

50 MeV Run @ 45° zenith Full AO SIM

Raw Energy in Red Recon Energy in Blue

Resolution: ~ 23 %

Performance illustration

30 MeV Run @ 37° zenith Full AO SIM

Raw Energy in Red Recon Energy in Blue

Resolution: ~ 25 %

Recon: High Energy Corrections

· Regis's transparencies here

Recon: s/w Needs

- Minimisation Package (Midnight implemented but ...)
- Interactive Graphical Display : Hits, ReconObjects

 Clustering, Rejection variables studies
- Interactive Analysis Tools
 Study of Discriminate Vars
- Event Filters
- Support for Linux/Unix Platforms (installation, etc...)
- More to come ...

SIM: Where We Are & Where to Go

· CAL Geometry/ Material / Interactions

Compression Cell Concept

⇒ Level 3 : Implement Carbon Fibre Structure

Await Final Design & New Geom Framework; Mid Term (Fr)

Energy Trace in passive Material (incl TKR), Leakage Dump

 \Rightarrow Level 1 + : Implement

Rather Short term (UW?)

dE/dx discrepancy seen in TB results

⇒ Level 1 + : Verify / Correct (muons, protons)

Very Short term (Italy?, SLAC?, UW?)

Heavy ions interactions:

⇒ Level 1 + : RQMNTs + Implement interaction model

Rather Long term wait for G4?

SIM: Where We Are & Where to Go

Digis

Current Status: Embedded with Hits; see 6th july s/w telecon

- ⇒ Level 1 + : Implement CAL Hits
 Very Short term (UW? + CAL)
- Xtal Light attenuation model

Poor Light Atten Model;

⇒ Level 1 + : Implement Better model and add individual coeffs/Xtal

Model (Eric, Gilles) Coding Sacha; Short term for BT if needed

- · Diodes Active + geometry : done
- FEE Electronics Noise done;
- \Rightarrow Level 1 + : Generate individually for each Channel

For TB Analysis (Sacha); very short term

SIM: Current Embedded Hits and Digis

SIM: generateResponse ()

• What is implemented inside generateResponse?

SIM Physics: Where We Are & Where to Go

Digis (continued)

Gain Ranges done;

 \Rightarrow Level 1 + : Generate individually for each Channel

For TB Analysis (Sacha); very short term

best range Readout done

⇒ Level 1 + : Implement Calibration mode (4 range readout)

Non Linearity effects

⇒ Level 1 + : Understand & Implement

Cross-Talk

Level 1 + : Understand & Implement

SIM: Needs From s/w Central

CAL Hits & Digis separationUrgent!

+Energy Trace in passive Material CAL, TKR, Leakage Dump

- Support for Migration to Gaudi
- Support for Migration to G4
- Support for Linux/Unix Platforms
- Heavy ion interactions
- · More to come ...

Migrations

- Two Major Migrations are planned for GLAST S/W
- Interference with current code development has to be prepared, anticipated as much as possible
- · GAUDI

Rewrite Algorithms/Constants after requirements

· GEANT 4

Geometry Framework; Interactive Display, ...

New Code Policy

- · One person should be responsible for one module, in terms of :
 - · Final agreement btw RQMNTs & Code
 - That includes:
 - · performance,
 - · documentation,
 - test modules,
 - Interaction with other modules, sub-systems
- Other developers should communicate with and through him (but not only ...)
- The Preliminary steps are :
 - Requirements
 - task sharing, volunteering, assignment?!

• Pre-Recon, Calibration (see Eric for details):

Gains files status:

old gains: one fixed gain per range (0-1-2-3) for all log ends
 No rails, no Linearity Corrections, no Slope Corrections

new gains :

Individual gains per range (0-1)

Rails, Linearity Corrections, Slope Corrections

Fixed gains for ranges (2-3) for all log ends

Rails, Linearity Corrections, Slope Corrections

For all Ranges, the rails are multiplied by 0.6 to avoid the high non linear zone btw 3000 & 4000 adc counts

Recon

- High energy:
- 2 correction algorithms have been tested and Implemented:
 - Profile fitting
 - Last layercorrelations (Ce7);
- · Low energy:
 - Correction prototype exists (see CAL s/w review)
 - · Need TBSim installation on Linux @ CCPN (Lyon) done
 - Need for an up to date version of instrument.xml + noisy strips
 - Next steps: Run Tbsim to extract correction coefficients
 - · Readapt the prototype; test it on MC data
 - · Commit and begin TB low energy runs data analysis

· What we see is:

- The Energy sum distribution is slightly tighter with new gains as compared to the one derived with old gains
- But it is biased towards high energies as compared to TBSim :
 - •The mode of the distribution is ~18 GeV instead of ~15

· As a result:

 \cdot The Recon Corrected Energy distribution either with profile fitting or last layer (e7) correlation methods is biased to ~22-23 GeV

Run 138 : Black : Raw sum; Red : Profile ; Blue : Ce7

Run 137 : Black : Raw sum; Red : Profile ; Blue : Ce7

Test Beam Status: TBSim

- Calibration Files
 - Pedestal, Gains, Rails, Slopes, Int_lin files have been produced and committed;
- Pedestals = 0: the TBSim output is already pedestal subtracted
- Rails not relevant because Int_lin for sim = Identity;
- As Hits and Digis are still embedded in the CAL Sim branch:
 - the output of TBSim includes already the digitisation error
- As ROOTWriter "thinks" it is reading hits:
 - It digitizes once again => the digitization error is applied twice
 - Not a real issue, except maybe for low energy runs
 - It applies a factor 3/2 per log end (to correct for Light Atten)
- A special gain file has been committed to correct for the 3/2 factor.

